
A Simple Practical Accelerated Method for Finite

Sums:Point-SAGA

Menglong Li

May 12, 2017

Abstract

This report will give an intuitive explanation of the point-SAGA algorithm by

comparing with SAGA algorithm. We will show that point-SAGA is the combination

of SAGA and proximal point algorithm, which means it has the advantage of both

algorithms. It is shown that point-SAGA is faster than SAGA when the sample

number is smaller than condition number and is as fast as SAGA when sample number

is larger than condition number.

Contents

1 Introduction 1

2 Proximal operator 2

3 Gradient aggregation 3

3.1 SGD+GA=SAGA . 4

3.2 SAGA+Proximal operator=point-SAGA . 4

4 Comparation of complexity 5

1 Introduction

In ECE543, the ERM algorithm needs to solve the problem:

min
f∈F

1

n

n∑
i=1

l(f(xi), yi).

Here, F is typically a closed convex subset of a Hilbert space H, l is the loss function,

(x1, y1), ..., (xn, yn) is the sample data. Typically, l is convex, for example, hinge loss

l(f ;xi, yi) = (1− yif(xi))+, logistic loss log(1 + exp(−yif(xi))), square loss (yi − f(xi))
2.

Therefore, general finite sum problem has been studied:

1

n

n∑
i=1

fi(x) = F (x).

1

And many efficient algorithms have been proposed such as stochastic gradient descent(SGD),

SAGA. It is known that SGD achieves sublinear convergence rate. In order to accelerate

SGD to linear convergence rate, many techniques have been developed. The most recently

developed methods are called fast incremental gradient methods(FIG), and SAGA is one

example of these methods. Paper[1] gives another accelerated method called point-SAGA

by combining the proximal operator with SAGA, and achieves a faster algorithm than

SAGA. In the following, we will illustrate point-SAGA in an intuitive way by introducing

proximal operator and SAGA and finally compare the complexity of these algorithms.

2 Proximal operator

In gradient descent algorithm, we update the next point by

xk+1 = xk − αk∂f(xk),

αk > 0 is the stepsize. That means xk+1 − xk = −αk∂f(xk) is the directions such that

f(xk+1)− f(xk) ≤ 0, i.e. descent direction.

Note that if f is convex, by the definition of subgradient, f(xk) ≥ f(xk+1)+∂f(xk+1)T (xk−
xk+1), we have

xk − xk+1 = αk∂f(xk+1)⇒ f(xk) ≥ f(xk+1) + αk∂||f(xk+1)||2 ⇒ f(xk)− f(xk+1) ≥ 0.

Therefore, we can also view ∂f(xk+1) as descent direction. If we update the next point as

xk+1 = xk − αk∂f(xk+1). (1)

Then we come to the so-called proximal gradient descent algorithm.

Note that the RHS of (1) depends on xk+1, we introduce the proximal operator:

Proxf (x) = argminy∈Rn{f(y) +
1

2
||y − x||2}.

If f is convex,

y = Proxf (x)⇔ 0 ∈ ∂f(y) + y − x⇔ y ∈ x− ∂f(y).

Therefore, we can write the proximal gradient descent as:

xk+1 = Proxαkf (xk).

In many cases, the proximal operator is easy to compute.

• Indicator function

f(x) =

{
0, x ∈ C
∞, x 6∈ C

Proxf (x) = argminy{f(y) + 1
2 ||x− y||

2} = argminy∈C{||y − x||2} = ΠC(x).

2

• hinge loss f(z) = l(z;xi, yi) = (1 − yizTxi)+. The proximal operator has a closed

form expression:

proxγf (z) = z − γyiνxi,

where s = 1−yizT xi
γ||xi||2 ,

ν =

−1, s ≥ 1

0, s ≤ 0

−s, otherwise

• Squared loss f(z) = l(z;xi, yi) = 1
2(yi − zTxi)2. Let γ′ = γ||xi||2, a = zTxi and

c = a+γ′y
1+γ′ . Then

Proxγf (z) = z − (a− c) xi
||xi||2

.

We introduce some properties of the proximal operator.

• Co-coercive ||Proxf (x)− Proxf (x′)||2 ≤ (x− x′)T (Proxf (x)− Proxf (x′)).

Let u = Proxf (x), u′ = Proxf (x′), then x − u ∈ ∂f(u), x′ − u′ ∈ ∂f(u′). Note

that f(u′) ≥ f(u) + ∂f(u)T (u′ − u) and f(u′) ≥ f(u) + ∂f(u′)T (u − u′) implies

0 ≥ (u−u′)T (∂f(u′)−∂f(u)) = (u−u′)T (x′−u′−x+u) = ||u−u′||2+(u−u′)T (x′−x).

Therefore, (u− u′)T (x− x′) ≥ ||u− u′||2.

• Contraction ||Proxf (x)− Proxf (x′)|| ≤ ||x− x′||.
Co-coercive and Cauchy-schwarz inequality implies ||u− u′||2 ≤ (u− u′)T (x− x′) ≤
||u−u′|| × ||x−x′||, then ||u−u′|| ≤ ||x−x′||. This is a generalization of projection

mapping.

• Orthogonal decomposition x = Proxf (x)+Proxf∗(x), where f∗ is the conjugate

function of f .

• Affine transformation Proxh(x) = 1
t (Proxt2f (tx+a)−a), where h(x) = f(tx+a),

t 6= 0.

• Conjugate Proxth(x) = x− tProxh/t(x/t).

• L2 regularization ProxγF (z) = Proxαγf (αz). Where F (x) = f(x) + µ
2 ||x||

2 and

α = 1− µγ
1+µγ .

3 Gradient aggregation

In SGD, we only use the information of the current calculated gradient ∂fi(x
k). If the

current iterate has not been displaced too far previous iterates, then stochastic gradi-

ent information from previous iterates may still be useful. More specifically, although

E[fi(x
k)] = 1

n

∑n
j=1 fi(x

k), that is the average of fi(x
k) is the deepest descent direction

1
n

∑n
j=1 fi(x

k), but the variance may be very large, which means randomly choose the di-

rection fi(x
k) will not descent fast. However, we can use the previous gradient information

to reduce the variance and thus accelerate the descent speed.

3

3.1 SGD+GA=SAGA

If we combine SGD and GA, we have the SAGA algorithm:

1. Initialize x1 and stepsize α > 0.

2. For i = 1, ..., n, compute ∂fi(x
1), store ∂fi(x[i])← ∂fi(x

1).

3. For k = 1, 2, ..., choose j uniformly in {1, ..., n}, compute ∂fj(x
k). Set the direction

gk ← ∂fj(x
k) − ∂fj(x[j]) + 1

n

∑n
i=1 ∂fi(x[i]). xk+1 ← xk − αgk. Store ∂fj(x[j]) ←

∂fj(x
k).

Note that

E[gk] = Ej [∂fj(x
k)− ∂fj(x[j]) +

1

n

n∑
i=1

∂fi(x[i])] =
1

n

n∑
i=1

∂fi(x
k)

⇒ gk is unbiased estimate of deepest descent direction. Note that V arj [gk] = E[(∂fj(x
k)−

∂fj(x[j])+E[∂fj(x[j])]−E[∂fj(x
k)])2] = V arj(∂fj(x

k))+V arj(∂fj(x[j]))−2Cov(∂fj(x
k), ∂fj(x[j])).

Therefore, if ∂fj(x
k) and ∂fj(x[j]) are highly correlated, then V ar(gk) is smaller than

V ar(∂fj(x
k)). Indeed, we have the following theorem.

Theorem 3.1. • If fi are µ-strongly convex and L-smooth and SAGA runs with step-

size α = 1
2(µn+L) , then

E||xk−x∗||2 ≤ (1− µ

2(µn+ L)
)k[||x0−x∗||2+ n

µn+ L
[f(x0)−(x0−x∗)T∂f(x∗)−f(x∗)]].

• If only have 1
n

∑n
i=1 fi(x) is µ-strongly convex, set α = 1

2(µn+L) , then

E||xk−x∗||2 ≤ (1− µ

6(µn+ L)
)k[||x0−x∗||2+ n

µn+ L
[f(x0)−(x0−x∗)T∂f(x∗)−f(x∗)]].

• In the non-strongly convex case, let xk = 1
k

∑k
i=1 x

i, α = 1
3L , then

E[F (xk)]− F (x∗) ≤ 4n

k
[
2L

n
||x0 − x∗||2 + f(x0)− (x0 − x∗)T∂f(x∗)− f(x∗)].

Therefore, we can see SAGA achieves linear convergence rate.

3.2 SAGA+Proximal operator=point-SAGA

In the SAGA algorithm, we update the next point by

xk+1 = zkj − α∂fj(xk),

where zkj = xk+α(∂fj(x[j])− 1
n

∑n
i=1 ∂fi(x[i])), which is a unbiased estimate of xk. There-

fore, SAGA is a revised version of SGD. Point-SAGA utilize the proximal operator in the

second step, that is xk+1 = Proxγfj (z
k
j). We write the full point-SAGA algorithm below:

Point-SAGA

1. Initialize x1 and stepsize γ > 0.

4

2. For i = 1, ..., n, compute ∂fi(x
1), store ∂fi(x[i])← ∂fi(x

1).

3. For k = 1, 2, ..., choose j uniformly in {1, ..., n}, compute ∂fj(x
k). Let

zkj = xk + γ(∂fj(x[j])−
1

n

n∑
i=1

∂fi(x[i])),

xk+1 = Proxγfj (z
k
j).

Store ∂fj(x[j])← 1
γ (zkj − xk+1).

In the following, we illustrate the convergence performace of point-SAGA.

Let x∗ be the optimal solution. g∗j is subgradient of fj at x∗ such that
∑n

i=1 g
∗
j = 0. Let

vj = x∗ + γg∗j , then x∗ = prorγfj (vj). Denote gkj to be the subgradient of fj at iteration

k. Then

Theorem 3.2 ([1],Theorem 5). Let

T k =
c

n

n∑
i=1

||gki − g∗i ||2 + ||xk − x∗||2,

for c = 1
µL . Then using step size γ =

√
(n−1)2+4nL

µ

2Ln − 1− 1
n

2L , the expectation of T k+1, over

the random choice of j, conditioning on xk and each gki , is

E[T k+1] ≤ (1− κ)T k

for κ = µγ
1+µγ , when each fi : Rd → R is L-smooth and µ-strongly convex and 0 < µ < L.

Corollary 3.3 ([1],Corollary 6). If each fi : Rd → R is L-smooth and µ-strongly convex,

then

E[||xk − x∗||2] ≤ (1− κ)k
µ+ L

µ
||x0 − x∗||2.

Theorem 3.4 ([1], Theorem 7). (Non-smooth case) If each fi : Rd → R is µ-strongly

convex, ||g0i − g∗i || ≤ B and ||x0 − x∗|| ≤ R. Then after k iterations of Point-SAGA with

step size γ = R
B
√
n
:

E[||xk − x∗||2] ≤ 2

√
n(1 + µR

B
√
n

)

µk
RB,

where xk = 1
kE[

∑k
i=1 x

i].

4 Comparation of complexity

This section, we compare the total complexity of algorithms: gradient descent, SGD,

SAGA and Point-SAGA.

5

GD SGD SAGA Point-SAGA

number of iterations O(κlog(1/ε)) O(L
µ2ε

) O((κ+ n)log(1/ε)) O((
√
nκ+ n)log(1/ε))

iteration cost O(n) O(1) O(1) O(1)

total complexity O(nκlog(1/ε)) O(L
µ2ε

) O((κ+ n)log(1/ε)) O((
√
nκ+ n)log(1/ε))

Number of iterations is the number of iterations needed to achieve ε accuracy. Here, κ

is the condition number L/µ. From the above table we found that SAGA and Point-SAGA

is much faster than SGD and GD. And Point-SAGA is faster than SAGA when n << κ,

and is as fast as SAGA when n > κ.

References

[1] Defazio, Aaron. ”A simple practical accelerated method for finite sums.” Advances

In Neural Information Processing Systems. 2016.

[2] Bottou, Léon, Frank E. Curtis, and Jorge Nocedal. ”Optimization methods for large-

scale machine learning.” arXiv preprint arXiv:1606.04838 (2016).

6

